
SSSD
Client side identity management

LinuxDays 2012

Jakub Hrozek

20. ř́ıjna 2012



1 User login in Linux

2 Centralized user databases

3 SSSD



Section 1

User login in Linux



User login in Linux

User login in Linux

How does the GDM know about all the users on the system?
How does the GDM know about properties of a user?

home directory, groups, shell, . . .

How does it verify the password?



User login in Linux

The login process in general

GDM, ssh, login, . . .

let’s break up the process into multiple steps

1 gather information about the user
2 authenticate the user



User login in Linux

Identifying the user

In UNIX, everything is a file, right?

users stored in /etc/passwd, host names in /etc/hosts, . . .
so let’s just read the file

But what if the system needs access outside the files?

users in LDAP, host names in DNS, . . .

there needs to be an API

usable for all applications transparently - libc
the application doesn’t usually care about the source of data
pluggable - to easily support new databases



User login in Linux

Name Service Switch

part of the C library

modular - a module represents a way to access a database
from a source

retrieve a user from files
retrieve a host name from DNS

several known databases, several widely used sources

passwd, group, hosts, services, . . .
stored in files, LDAP, NIS, . . .

config file /etc/nsswitch.conf
modules evaluated in the order specified in the config file
we want the local root, not the one from LDAP



User login in Linux

Authenticating the user

each application can do auth on its own

read a password, hash, compare hashes
insecure, only handles passwords

applications need to be abstracted from the means of
authentication

high level API
configurable low-level stack accessible by the API



User login in Linux

PAM - Pluggable Authentication Modules

A programmable stack that provides several steps

account - Is the user valid?
auth - Can the user authenticate?

session - Post-login management
password - Password management



User login in Linux

PAM - Pluggable Authentication Modules

many different modules available

it is possible to configure different aspects of the login process

authenticate using /etc/shadow, LDAP, Kerberos
password quality checks, UID range checks, time base checks
. . .

configurable using files in /etc/pam.d



User login in Linux

Checkpoint - user login

In order to log in a user, we need to:

Obtain information - Name Service Switch
Authenticate - PAM stack



Section 2

Centralized user databases



Centralized user databases

User accounts in a large environment

it is not practical to distribute files

synchronization problems
retention

large organizations need to centralize user information

usually not only identities but also policies

several industry-standard solutions

UNIX/Linux – LDAP, LDAP + Kerberos, NIS
Windows – Active Directory (LDAP + Kerberos)
LDAP is the most common identity store



Centralized user databases

Basic LDAP client configuration overview

using NSS and PAM modules

NSS - nss pam ldapd using /etc/nslcd.conf
PAM - pam ldap using /etc/ldap.conf



Centralized user databases

The trouble with nss pam ldapd and pam ldap

logging in as accounts from different organizations on a single
client

how does one ensure 1:1 mapping between identities and
authentication?

server redundancy and fail over

what if the servers are not reachable

network down, roaming laptop, disconnected corporate VPN



Centralized user databases

The trouble with nss pam ldapd and pam ldap

several existing solutions:

ldapsearch | awk > /etc/passwd in a cronjob :-)
local LDAP replica
persistent nscd cache

usually replica of the whole directory

all entries, potentially huge
including attributes we are not interested in

still need to solve server fail over



Centralized user databases

The real LDAP clint configuration overview

using traditional NSS and PAM modules

NSS - nss pam ldapd using /etc/nslcd.conf
id cache - nslcd

PAM - pam ldap using /etc/ldap.conf
auth cache - pam ccreds

SUDO - sudo using /etc/sudo-ldap.conf
automounter - autofs using /etc/sysconfig/autofs



Centralized user databases

Integration is the key
An admin can build his own identity management solution, but..

Bad level of abstraction
admin wants to enroll a client, not mess around with LDAP

the admin needs to understand and master several non-trivial
technologies
configuration scattered across the system

admins get frustrated with all the config options..



Centralized user databases

Integration is the key
An admin can build his own identity management solution, but..

Bad level of abstraction
admin wants to enroll a client, not mess around with LDAP

the admin needs to understand and master several non-trivial
technologies
configuration scattered across the system

admins get frustrated with all the config options..



Section 3

SSSD



SSSD

System Security Services Daemon

http://fedorahosted.org/sssd

a system daemon that provides access to remote identity and
authentication services

developed since Sep 2008

http://fedorahosted.org/sssd


SSSD

SSSD

a system daemon that provides access to identity and
authentication remote resource

communicates with the rest of the system using its own Name
Service Switch module and a PAM module

modules only act as forwarders
the logic is in the daemon

supports several 3rd party applications

the project began as a FreeIPA client but can be (and is) used
standalone.



SSSD

Back ends supported by the SSSD

the currently supported back ends are:

LDAP for both identity and authentication
Kerberos for authentication
IPA
Active Directory
proxy



SSSD

The benefits of SSSD

on-disk persistent cache

reduces server load
seamless offline support, including authentication

stateful, keeps track of state of remote servers

supports server fail over
detects networking change to retry operations over the network

multiple identity information sources (domains)

only one connection to the LDAP server is open

automatic Kerberos ticket acquisition

passwords stored in kernel keyring when logging in offline

automatic Kerberos ticket renewal

KDC must issue renewable tickets



SSSD

Advanced SSSD features

In addition to providing identity lookups and authentication

IPA specific features

Host Based Access Control
SELinux user mapping
OpenSSH host key caching

support for 3rd party applications that store data in LDAP

SSSD acts as a transparent proxy and looks up data on behalf
of the applications

Caching of sudo rules
Caching of autofs maps



SSSD

Advanced SSSD features

access providers

simple, per-service, per-host, IPA-specific

Cross-realm Kerberos trust support

pre-seeding of users for first boot



SSSD

Advanced SSSD features

access providers

simple, per-service, per-host, IPA-specific

Cross-realm Kerberos trust support

pre-seeding of users for first boot



SSSD

SSSD Configuration

a single config file /etc/sssd/sssd.conf

/etc/sssd/sssd.conf

[sssd]
domains = LDAP.EXAMPLE.COM

[domain/LDAP.EXAMPLE.COM]
id_provider = ldap
ldap_uri = ldaps://ldap.example.com
ldap_search_base = ou=accounts,dc=example,dc=com
cache_credentials = true



SSSD

Active Directory Integration

SID to UID and GID mapping

tokenGroups support

Range retrieval support

Native AD schema mapping



SSSD

Joining an Active Directory Domain

provided by the realmd project

a new package, under active development

very easy to use

yum install realmd
realm join --user Username ad.example.com

both server and desktop use case



SSSD

The availability of SSSD

stable release 1.9.2 - AD provider, Sudo, SELinux, . . .

LTM release 1.8.5

SSSD is part of all the major Linux distributions

Fedora, RHEL, Ubuntu, Debian, Gentoo, FreeBSD ports



SSSD

Future directions

further AD integration improvements

Smart Card support

Two Factor Authentication

Desktop integration with general D-Bus interface

Monitoring of expiring tickets

RADIUS authentication provider



The end.
Thanks for listening.



SSSD

SSSD Architecture

monitor - central process monitoring other worker processes

the services itself run in separate processes

NSS responder responds to identity information coming from
the nss sss module
PAM responder performs authentication on behalf of the
pam sss module
each domain runs in a separate process as well

processes communicate using D-Bus protocol



SSSD

SSSD Architecture



SSSD

talloc

hierarchical, reference counted memory pool system with
destructors

Code example

struct foo *X = talloc(mem_ctx, struct foo);
X->name = talloc_strdup(X, "foo");
talloc_free(X);

talloc free(X->name) != talloc free(X) !=
talloc free(mem ctx)

n-ary tree where you can free any part of the tree with
talloc free

provides destructors

provides means to ”steal” pointers from one context to
another


	User login in Linux
	Centralized user databases
	SSSD

